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Abstract--The isothermal transport of liquids in partially saturated packed beds of glass spheres has been 
examined. Experimental results and numerical calculations show that in the case of hysteresis-affected 
capillary pre:~sures a flux equation based on the gradient of the local capillary pressure has to be used. 
Measured capillary pressures for different transport processes, initial states and liquids are presented. The 
transport rate is controlled by the effective permeability, which depends on the mobility ratio of gas and 
liquid flow. At high liquid contents the increasing gas flow resistance causes a decrease of the total transport rate. 

INTRODUCTION 

A multitude of engineering efforts include application 
and treatment of moist porous media. Drying of wet 
products, decontaraination of polluted soils or irri- 
gation of plants are only a few examples. They include 
the transport of a liquid in an unsaturated porous 
material. At low transport rates two different types of 
flux equations are used in the literature. One describes 
the transport of the liquid similar to diffusion while 
the other states a flow process. It has been recognized 
very early [1], thai: differences in the local capillary 
pressure are the physical reason for liquid flow in an 
unsaturated porous medium. As shown in Fig. 1, the 
capillary pressure usually depends on the initial state 
and preceding transport process. This hysteresis and 
the complications caused by it have been subject of 
experimental and theoretical studies [2-4]. Never- 
theless, in chemical engineering and hydrology it is 
common to ignore hysteresis and to assume a unique 
relation between capillary pressure, permeability and 
liquid content [5-7]. This simplification reduces the 
mathematical desc, ription of the transport process 
to a nonlinear parabolic differential equation with 
strongly varying, but continuous kinetic coefficients, 
while inclusion of Zaysteresis can originate discontinu- 
ous coefficients. A second reason for neglecting hystere- 
sis in most studies on transport processes in unsaturated 
porous media is that the measurement of hysteresis 
affected capillary pressures and permeabilities is time 
consuming and even for customary model systems like 
packed beds of glass spheres only a few data of both 
quantities are available (e.g. [8]). To elaborate the 
need of taking hysteresis into account and to provide 
a basis for estimaSon of the controlling factors the 

transport of a liquid in packed beds of glass spheres 
has been studied. 

MATHEMATICAL FORMULATION 

The one-dimensional isothermal displacement of a 
liquid or gas in an unsaturated, homogeneous, iso- 
tropic and rigid porous body is examined. Gas and 
liquid are assumed to be incompressible and immis- 
cible Newtonian fluids. Neither gas nor liquid dissolve 
in the solid. Any chemical reaction or osmotic effect 
is excluded from consideration. Surface transport or 
diffusion of vapour are ignored and the influence of 
gravity is neglected. 

Using the degree of saturation 

v, 
$1 - ~Vt (1) 

as a measure of liquid content and referring to the 
superficial velocity 

cf 
uf = At (2) 

the mass balances for gas and liquid are: 

8S1 BUg 
- ~ ~t  0 x  (3 )  

8Sl 3ul 
8 8t Ox" (4) 

In general, the velocity of each fluid depends on 
the pressures in all phases. If attention is focused on 
processes with very low transport rates characterized 
by a capillary number of 

t Author to whom correspondence should be addressed. 
Author died 29 August 1994. 

C a = Ul~71 << 1 (5) 
O'g I 
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NOMENCLATURE 

a parameter of the van Genuchten- e porosity 
equation (24) ~/ viscosity 

A area x liquid diffusion coefficient, defined by 
b capacity, defined by equation (18) equation (17) 
C parameter of the van Genuchten- a surface tension. 

equation (24) 

Ca Capillary number, equation (5) Subscripts 
d mean particle diameter 

0 initial 
D moisture diffusivity, defined by c capillary 

equation (15) d drying 
F force eft effective 
9 acceleration of gravity f fluid 
k permeability of a single fluid 
K permeability g gas 

ir irreducible 
n exponent 1 liquid 
m mobility ratio r relative 
M mechanical moment 

s saturated 
P pressure t total 
R mean curvature of gas-liquid interface 

w wetting. 
S degree of saturation 
t time 
u superficial velocity Abbreviations 
V volume PWC primary wetting curve 
x space coordinate. MWC main wetting curve 

SWC secondary wetting curve 
Greek symbols PDC primary drying curve 

parameter of the van Genuchten- MDC main drying curve 
equation (24) SDC secondary drying curve. 
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WC wetting curve 
DC drying curve 
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Fig. 1. Typical capillary pressure curves for sand-water. 
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capillary forces dominate the flow of the liquid. There- 
fore, the momentum transfer across the gas-liquid 
interface and also inertial effects can be neglected. In 
this case it is possible to use linear and uncoupled 
extensions of Darcy's law for fluid flow through 
porous media [9, 10]: 

kg ~Pg 
Ug (6) 

t/g c3x 

kt OPj 
u, = -- ~I ~ x "  (7) 

Equations (6) and (7) state, that the superficial vel- 
ocity Ur of each fluid is simply the product of the 
pressure gradient in the fluid and the ratio of per- 
meability kr and dynamic viscosity r/f of the fluid under 
consideration. Commonly, the permeability kf is 
expressed as the product of the permeability ksr of 
the porous medium saturated with one fluid and the 
relative permeability krf, which describes the depen- 
dence of the permeability on the degree of saturation: 

ksgkrg t~Pg 
u+ - ( 8 )  

r/g 0x 

kslkrl c3PI 
~, - . ( 9 )  

th t~x 

The pressures in the fluids are coupled via the capillary 
pressure. Excludinp sorption and restricting on small 
pressure differences caused by the curvature of the 
gas-liquid interface [10], the capillary pressure is 
simply 

Pc = Pg-PI. (10) 

Combination and rearrangement of equations (3), 
(4) and (8)-(10) using the method of Buckley and 
Leverett [11] leads to the transport equation 

e aS'~ +ut 0 ( 1 \ a [Koff aPc'x o. 

In equation (11) the effective permeability 

m 
Korf = ~ m  k~lk,l (12) 

depends on the mobility ratio 

rhksgkrg 
m = (13) 

r/gkslkrl 

and therefore describes the permeability of the porous 
medium for a imbibition or drainage process including 
the flow resistance for gas flow. The convective term 
in equation (1 l) is a measure of change in saturation 
caused by the total superficial velocity 

u~ = ug + ui ( 1 4 )  

and the local change in the ratio of the permeabilities. 
To get a resolvable equation either OSUOt or ~PdSx 

has to be replaced in equation (11). If  capillary hys- 
teresis is neglected, or one concentrates on processes 

with the same hydraulic history and local transport 
direction throughout the porous medium, it is possible 
to substitute OS/3x for OPc/t~x and to use an effective 
moisture diffusivity 

K~ff c3P c 
Oerf - (15) 

ql ~S 

to describe the fluid flow. If also the flow resistance 
for gas flow is neglected, the convective term dis- 
appears and the transport equation (11) is equal to 
the equation of Richards [12]. In this case, the effective 
moisture diffusivity defined by equation (15) reduces 
to the moisture diffusivity 

kslkrl OPt 
D - (16) 

r/i t3S 

used in hydrology for description of infiltration pro- 
cesses [13] or the liquid diffusion coefficient 

D 
K = --  (17) 

introduced by Krischer [7] in drying technology. Both 
coefficients can be estimated using a combination of 
approximation functions for permeability and capil- 
lary pressure [14] or by methods based on a geometric 
interpretation of measured capillary pressures [7]. 

Hysteresis in the relation of Pc and Sl leads to prob- 
lems in performing the differentiation of the third term 
in equation (11). Therefore, the substitution of ~Po/Ot 
for aS/dt and the definition 

as, 
b = - - e ~  (18) 

is adopted. Using this capacity term one gets the trans- 
port equation: 

~-- = Ut ~X ~ + ~X t #71 OX )" (19) 

With the condition 

Utlboundary = 0 (20) 

at an impermeable boundary and using equations (3), 
(4) and (14) it follows 

Ut(x) = 0 (21) 

throughout the porous body. Consequently the con- 
vective term in equation (19) disappears. If attention 
is focused on the effect of hysteresis and the influence 
of the mobility ratio on the transport of a liquid, it is 
hence convenient to investigate redistribution pro- 
cesses in closed systems. 

EXPERIMENTAL SET-UP 

The principle of the apparatus build to observe the 
transport process is depicted in Fig. 2. During the flow 
of a liquid in a porous body the centre of gravity 
moves. This causes a change in the mechanical 
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Fig. 2. Principle of the moment method. 
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Fig. 3. Apparatus for the moment method. 

moment at the fulcrum. It is measured as change of 
the leverage balancing the moment. Figure 3 shows a 
simplified scheme of the apparatus actually used. Its 
main features are displaceable fulcrum, a revolving 
sample attachment and the use of different precision 
adjusting-screws to insure an accurate horizontal 
alignment. The leverage is measured with a balance, 
enabling a resolution of 10 -6  N m at the employed 
sample length of 0.1 m. 

Capillary pressures have been measured with the 
suction apparatus suggested by Haines [15]. The alter- 
ation rate of the level in the burette of the device 
can also be used to determine effective permeabilities. 
Details of the apparatus and the procedure to evaluate 
the experimental data are described in [16]. 

The packed beds were made of glass spheres with 
normal size distribution. Their main properties are 
given in Table 1. Distilled water or commercially 
available liquids of analytical grade have been used. 

EXPERIMENTAL RESULTS 

The effect of capillary pressure hysteresis on the 
final liquid distribution is shown in Fig. 4. The redis- 
tribution process in a sample with initially step-like 
loading is monitored by measuring the change of 
moment. To ensure complete equalization of driving 
forces, the experiment lasted 60 h although almost the 
whole transport process is finished during the first 20 h. 
At  the end of the experiment the sample is cut into 
pieces of 10 mm width and their liquid content is 
measured. Only a small amount of the liquid in the 

Table 1. Properties of the particles and packed beds 

d [/am] aSTD [#m] e ks, [m 21 

127 9.2 0.37 9.0 x 10 -12 
321 21.7 0.37 1.1 x 10 -~° 
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Fil;. 4. Redistribution experiment, change of moment and final liquid distribution. 
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part with initially high degree of saturation moved to 
the lower loaded part. This result is easy to under- 
stand, if one considers a balancing of capillary pres- 
sures as driving force, for the liquid movement. In Fig. 
5, a qualitative explanation is sketched using a detail 
of the capillary pressure curves shown in Fig. 1. It is 
assumed that the two parts of the sample have been 
wetted along the same main wetting curve (MWC) to 
their different initial degrees of saturation S01 and S0> 
During the redistribution process the part with the 
lower degree of saturation S01 and higher capillary 
pressure Pc01 is wetted along MWC while the other 

part is drained along a secondary drying curve (SDC). 
At equal capillary pressures the difference in MWC 
and SDC causes the remaining difference in the final 
liquid content of the two parts. 

To describe this hysteresis effect on the rate of liquid 
exchange and final liquid distribution quantitatively, 
effective permeabilities and capillary pressures must 
be known. A complete set of capillary pressure curves 
representing a sequence of imbibition and drainage 
processes of an initially dry and a saturated packed 
bed is shown in Fig. 6. Supplementary also capillary 
pressures of a mechanical mixture compressed to the 
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Fig. 5. Effect of capillary pressure hysteresis on the final liquid distribution. 
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Fig. 6. Capillary pressure curves for a packed bed of glass spheres and water. 

same porosity are shown. The values match the imbi- 
bition curves probably because the movement of the 
gas-liquid interface during compression is the same 
as in a wetting process. In Fig. 7 capillary pressures 
of the same packed bed but  different liquids and of a 
second packed bed are shown. The results are given 
in a normalized form using the J-function 

J = Pcx/(ks]/e) (22) 
O'g I 

suggested by Leverett [17]. Yet unexplained devi- 
ations at very low or high degrees of saturation the 
curves are independent of the viscosity and pro- 
portional to the surface tension of the liquid. This 
result might be expected from the Laplace-equation 

Pc = trgl (23) 
R(s) 

where R(s) is the mean curvature of the gas-liquid 
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Fig. 7. Normalized capillary pressure curves of different packed beds and liquids. 
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interface. Nevertheless it is not trivial, because there 
is evidence that the liquid distribution and thus the 
capillary pressure depends in general on imbibition or 
drainage rate and en the mobility ratio [18]. 

For most applications the experimental results can 
be represented sufficiently accurate by the empirical 
equation of van Genuchten [19] 

SI - (?l 
- [I + (a,/)~]('-")/" (24) 

1 - C , - - C  1 

with parameters depending in the initial state and 
transport direction (see Appendix). It has to be 
emphasized, that the equation of van Genuchten is 
only suitable to packed beds of particles with narrow 
size distribution. Bidispers systems can show capillary 
pressure curves not describable with the model of van 
Genuchten [16]. In this case, a more general method, 
e.g. the domain theory [20], should be applied. 

Figure 8 show.,; some measured effective per- 
meabilities for the same system as in Fig. 6. The most 
striking result is the existence of a maximum. An 
explanation is given by equations (12) and (13), con- 
sidering that at increasing liquid contents the per- 
meability for liquid flow increases but the permeability 
for gas flow decreases. This results in the observed 
maximum of the effective permeability at a liquid con- 
tent determined by the ratio of fluid viscosities and 
the degrees of irreducible saturations. 

Although deviations between the effective per- 
meabilities of the different processes are obvious, no 
systematic dependence on the transport direction or 
initial state can be deduced. Therefore, the effective 
permeability is assumed to be a unique function of the 
liquid content. In Fig. 8 the dashed lines represent 

the individual permeabilities for gas and liquid flow 
according to the customary power law 

= ( S f -  Sir,f~ n 
krf k 1 --Sir.f ] "  (25) 

For  convenience the same exponent n = 4 and equal 
permeabilities for gas and liquid flow in a dry and a 
saturated packed bed have been used. Combination 
of these curves according to equations (12) and (13) 
leads to an acceptable description of the measured 
effective permeability. 

If only the permeability of the saturated packed bed 
is known, different authors have suggested to calculate 
the relative permeability from the capillary pressure 
curves. Mualem [21] has reviewed these methods. 
Following his recommendations, use of the van 
Genuchten-equation (24) leads to relations compiled 
in the Appendix and shown in Fig. 8 as dotted lines. 
They give only coarse estimations of the measured 
effective permeability. Regarding this results and the 
scattering of experimental data, the use of more elab- 
orated models seems to be inappropriate. 

CALCULATION RESULTS 

The transport equation (19) has been solved in its 
simplified form for closed systems taking advantage of 
equation (21). Numerical calculations were performed 
using the finite volume method [22] and a fully implicit 
scheme. In Fig. 9 the results for a redistribution pro- 
cess in a closed system with a step-like initial loading 
are shown. Capillary pressures and permeabilities 
have been calculated by the van Genuchten-equation 
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Fig. 8. Effective permeabil i ty  for a packed bed o f  glass spheres and water. 



1932 W. BOSSING et al. 

St 

0.8 

0.6 

0.4 

0.2 

t = 0 M i n  I . . ..-, I a = 3  

. . . . . .  - -  ~'-':-'-:-'~--- - - ~ - -  Sir, g = SirJ = 0.1 

-*-- ~ [ o~ = 2 10 "4 Pa l, oql = 1 10 -4 Pa "4 

~-~-~..~'--.,~,, "'.. 300 Min 

Kr=kd  , oqv= oq~ = 1.5 104Pa x " ,  

N=k~l f ~ 
1Min 5Min 30Min 

K r = krlm / (l+rn) 

I , I , I , I I , I , I , ,  I , ,  I , 
10 20 30 40 50 60 70 80 90 

x / m m  
100 

Fig. 9. Calculation results for a redistribution process in a closed system. 

(24). The dotted lines represent the results for a system 
without hysteresis. The dashed lines show results for a 
calculation taking hysteresis into account but ignoring 
the gas flow resistance while the full lines represent a 
calculation including both factors. Figure 9 clearly 
demonstrates the incomplete exchange of  moisture 
caused by a hysteresis of  the capillary pressure. It 
also indicates the influence of  the gas flow resistance 
resulting in a decrease of  the total transport rate in 
areas of  high liquid content. 

A comparison between calculation and experiment 

is shown in Fig. 10. A preloaded sample has been 
wetted almost instantaneously at one of its surfaces 
(position x = 0) with a limited amount  of  water. The 
movement  of the centre of  gravity during the redis- 
tribution process has been monitored by measuring 
the change of  moment  and the distribution of  
the liquid at the end of  the experiment has been 
determined. 

The calculation of  the capillary pressures is based 
on the van Genuchten-equation (24) with parameters 
as listed in Fig. 7 and Table 1. Permeabilities were 
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Fig. 10. Comparison between experiment and calculation for a redistribution process. 
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calculated either by the power law equation (25) or  
using the estimation based on the capillary pressure 
curves. Both methods lead to almost the same final 
distribution of  the liquid content  with deviations too 
small to be shown in Fig. 10. As one might expect from 
Fig. 8, the deviation between experimental values of  
the change of  moment  and the calculation based on 
equation (25) is slightly smaller than the difference 
between experiment and the calculation based on an 
estimation of  the permeabilities from the capillary 
pressure curves. 

Experiment and calculation show that the infil- 
tration of  the liquid is limited by the hysteresis of  
the capillary pressure. The movement  of  the liquid 
is controlled by a drainage capillary pressure at the 
boundary x = 0 while the uptake of  the liquid by the 
inner parts of  the sample is controlled by an imbibition 
capillary pressure. As depicted in Fig. 6, the difference 
in the relation of  Pc and S for different transport 
directions causes the restricted penetration of  the 
liquid into the packed bed. 

CONCLUSIONS 

To describe the internal transport of  liquids in 
unsaturated porous media, two different flux equa- 
tions have been proposed in the literature. One is 
based on the degree of  saturation of  the material, the 
other on the capillary pressure. Experimental results 
on packed beds of  glass spheres and numerical cal- 
culations show thaL in case of  hysteresis affected capil- 
lary pressures the transport of  the liquid has to be 
described by flux equations based on gradients of  the 
local capillary pressure, which reflect the complete 
hydraulic history of  the system. 

The capillary pressures measured for different 
liquids and packed beds of  glass spheres with narrow 
size distribution can be represented in a normalized 
form using the J-function of  Leverett by the para- 
metric model  of  van Genuchten. 

The rate of  liquid transport is controlled by the 
effective permeability, which depends on the viscosity 
of  the fluids and the permeability for gas and liquid 
flow. The permeabilities for the individual fluid flow 
can be represented by the customary power law equa- 
tions or estimated coarsely using the capillary pressure 
curves. In areas of  high liquid content the imbibition 
and drainage rate,, are influenced by the transport 
resistance for gas flow, resulting in lower total trans- 
port  rates. 
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APPENDIX 

Capillary pressures have been calculated by the van 
Genuchten-equation [19] 

S I - C I 

1 - G - C  t 
- -  - [1 + (otJ)a] (1 o)/~ (A1) 

with different parameters ~w during wetting and ~a during 
drying. The parameters Cg and C~ depend on the transport 
process and are listed in Table 2. If the capillary pressure 
changes along a secondary curve, the parameters C~ and Cj 
depend on the degree of saturation So and capillary pressure 
Pa at the inversion point of the former transport direction: 
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Table 2. Parameters of the van Genuchten-equation 

PWC MWC SWC PDC MDC SDC 

Ci 0 S~,~ equation Si,.l Si~,~ Sir,  I 
(A2) 

Cg Sir.g S,r.g Sir.g 0 Sir.g equation 
(A3) 

1 - -  Str,g - -  S 0 [ l + (0~wPco) a] (a - a)/a 
C, (A2) 

1 - [1 + ( c~Po0)"]  (~-  o/. 

C ,  : 1 - -  S i r j - - ( g o - -  Sir, i ) [1-b  (ozdPco)a] (a-a)ia. (A3) 

Using the van Genuchten-equation (A1) the capacity term 
is 

~S ~ ( a -  1)(~Po) ° - '  
b = - ~  = e ( 1 - C , - C 0  . (A4) 

[1 + (~po)o]~2o- o/o 

Permeabilities can be estimated using the effective degree of 
saturation for each fluid 

Se--Sir,, 
So~ -- (A5) 

1 - -  Sir,f 

and an equation recommended by Mualem [21]: 

. i / [*Sea: dSef  f / /'1 dS.fr 'X 2 

vs° /Jo  /Jo Po  o,j' (A6) 

With the van Genuchten-equation (A1) it follows (see also 
[191) 

krl = ~/So~,l {1 -- / ~(a-~/o~2 I1 -S~- ' ) )  f (A7) 

krg = x/S.~r,g{[l_(l_So~r.g)~/(. 1)](.-1)/~}2. (AS) 


